

Ryan Belfer Stevens Institute of Technology NASA NYCRI

MOTIVATION FOR A MANNED MISSION

- Various advantages in motion and reasoning
- Scientific advances in astro-chemistry/biology
- Next logical step in exploration, most Earth-like
- Cost in range of \$10-100 billion
 - Est. depends on payload and working model results
- o 6 months travel, 525 sols on surface Coincides with MARS C
- Hohmann transfer orbit
 - Heliocentric ellipse
 - Uses least amount of fuel

OVERVIEW OF MARS

• 50% diameter and 40% gravity of Earth

PROBLEMS

"I've a feeling we're not in Kansas anymore..."

- Not enough oxygen
- No readily available water
- Low atm. pressure
- Low temperatures
- Too much carbon dioxide

Survival for 525.5 sols

Artist's depiction of a pressurized habitat utilizing Mylar and radiators to help control temperature

SOLUTION FOR OXYGEN AND WATER

- In-situ resource utilization (extra \$3 billion otherwise)
 - Process system utilizing atmosphere and soil
- Send system one synodic period before (ex. 2028/2031)
 - Run for 720 sols before astronauts, 1246 sols total
- Land at ~10-15° north of equator
 - Shock-absorbing material and powerful thrusters

Season in Northern	Number of Sols
Hemisphere	(days)
Spring	194 (199.3)
Summer	178 (182.9)
Autumn	142 (145.9)
Winter	154 (158.2)
Total	668 (686.3)

IN-SITU PROCESSES

- Water Electrolysis
 - $H_2O \rightarrow H_2 + \frac{1}{2}O_2$
- Solid Oxide Electrolysis
 - $CO_2 \rightarrow CO + \frac{1}{2}O_2$

	Oxygen	Water
Total (kg)	1815	5184
Per sol needs for Four (kg)	3.45	9.86
Per sol production (kg)	1.46	4.16

- Sabatier Process
 - $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$, $\Delta H = -165 \text{ kJ/mol}$
 - Uses atmosphere, produces methane and water
- Reverse Water Gas Shift (RWGS)
 - $CO_2 + H_2 \rightarrow CO + H_2O$, $\Delta H = 41 \text{ kJ/mol}$
 - Uses atmosphere, produces carbon monoxide and water

DECISION MATRIX FOR CREATING OXYGEN

		Solid Oxide		Sabatier		Sabatier/RWGS/Syngas 95%/80%/75%		RWGS	
Criteria	Weight	Score	Weighted	Score	Weighted	Score	Weighted	Score	Weighted
Efficiency	35	9	315	8	280	9	315	5	175
Cost	25	5	125	7	175	6	150	4	100
Power	20	3	60	7	140	7	140	4	80
Supplies	10	9	90	4	40	6	60	9	90
Practicality	10	2	20	8	80	9	90	5	50
Total	100	27	610	34	715	37	755	27	495

 $2.95 \text{ CO}_2 + \text{SprigHs} + \text{CO} + \text{SprigHs} + \text{CO} + \text{CO}_2 + \text{CO}_$

MAKING THE OXYGEN

Making the Water: Rover Microwave

- o Soil density 1.52 g/cm³ (5% by mass is 7.6 kg/m²)
- Use microwave to extract
 - Must produce >2.5 kW, use two magnetrons
- Wheel base to move
 - Must cover circle of radius 15 m
- Cryocooler pan and tubes

Average production 4.16 kg/sol

POWER OPERATION

- Microwave and rover: 2700 W solar power TFSC
 - 90 W/m² average, accounting for dust and cleaning

• 11.5 hrs/sol in spring/summer, 10.5 hrs/sol in autumn/winter

System Flow Rates

Before astronauts arrive (424 Sp/Su 296 Au/Wn, 7984 hrs)

Sabatier (g/h)			RWGS (g/h)			Syngas (g/h)			
	H ₂	CH ₄	H ₂ O	H ₂	СО	H ₂ O	CH ₄	СО	H ₂
	21.90	41.62	93.64	5.476	61.33	39.43	41.62	109.25	7.936

- 373 g/h air
- o 390 g/h water
- Limiting factor in tank volumes

After astronauts arrive (247.5 Sp/Su 278 Au/Wn, 5765 hrs)

Sabatier (g/h)			RWGS (g/h)			Syngas (g/h)			
	H ₂	CH ₄	H ₂ O	H ₂	СО	H ₂ O	CH ₄	СО	H ₂
	22.14	42.06	94.63	5.534	61.98	39.85	42.06	110.4	7.886

- o 374 g/h air
- o 377 g/h water
- 140 g/h oxygen to habitat

FUTURE PROSPECTS

- Troubleshooting
 - Dust and thermal coverings
 - Rigorous testing of parts
- Tackle other problems
 - Supply return fuel
 - Lack of magnetosphere
- Renewed interest in space and technology
 - Advances for use on ISS and industry
 - More funding for NASA
 - Exponential advances in further exploration

